بررسی تنوع ژنتیکی ژنوتیپ‌های سیب بومی سیستان با استفاده از نشانگرهای IRAP وREMP

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد گیاهان دارویی، گروه باغبانی و فضای سبز، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران.

2 استادیار گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران.

3 استاد گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران.

4 دانشیار گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران.

5 استادیار گروه باغبانی و فضای سبز، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران.

10.30466/rip.2021.53285.1155

چکیده

به­ منظور بررسی تنوع ژنتیکی 25 ژنوتیپ سیب از سه منطقه هامون، بنجار و امامیه شهرستان زابل و یک منطقه زاهدان،  از  11 آغازگر IRAP و 3 آغازگر  REMAP استفاده شد. 14 آغازگر مورد استفاده در مجموع توانستند 61 مکان ژنی چند شکل را شناسایی کنند.  بر اساس نتایج به­ دست آمده، میانگین درصد چندشکلی در بین ژنوتیپ­ های مطالعه شده برابر 79/39 درصد بود که کمترین درصد چندشکلی به آغازگر 83003+K001 و بیشترین درصد چندشکلی به آغازگر 8565 اختصاص داشت. محتوای اطلاعات چندشکلی (PIC) نشانگرها بین 02/0تا 28/0 و شاخص نشانگر (MI) بین 29/0 تا 54/0 در کل ژنوتیپ­ های مورد مطالعه متغیر بود. بیشترین میزان PIC مربوط به آغازگر K006 و کمترین میزان  PIC مربوط به نشانگرهای 83003+K001 بود. همچنین بیشترین میزان MI مربوط به 8565 و کمترین میزان MI مربوط به آغازگر 83003+K001 بود. نتایج حاصل این احتمال را تقویت کرد که رتروترانسپوزون‏ هایی که بیشترین چند شکلی را تولید نموده­ اند، در تکامل گیاهان مورد تحقیق بیشتر جابجا شده و تعداد نسخه­ های بیشتری را داخل ژنوم تکثیر کرده­ اند. نتایج تجزیه خوشه­ ای بر اساس روش25UPGMA  ژنوتیپ مورد مطالعه را در سه گروه مجزا قرار داد. ژنوتیپ­ های با منشا جغرافیایی و همچنین شباهت­ های مورفولوژیکی و صفات باغبانی یکسان در زیر گروه‏ های متفاوت قرار گرفتند که علت این دسته­ بندی می‏ تواند به دلیل میزان متفاوت عناصر متحرک موجود در این ژنوتیپ­ ها باشد.

کلیدواژه‌ها


خدادوست، ع .، یوسف­ زاده، ح.، امیرچخماقی، ن.، عبداللهی، ح. و حسین ­زاده، ا. 1395. تنوع ژنتیکی سیب شرقی (Malus Orientalis Uglitz.) جنگل هیرکانی ایران، با استفاده از نشانگر ISSR-PCR. مجله پژوهش­ های سلولی و مولکولی (مجله زیست ­شناسی ایران)، 29(4): 359-369.
جهانگیرزاده، ش.، نورافکن، ح. و دامیار، س. 1392. ارزیابی تنوع ژنتیکی برخی از ژنوتیپ ‎های سیب ایران با استفاده از نشانگر RAPD. بوم­شناسی گیاهان زراعی، 9(1): 21-29.
کیان­ امیری، ش.، حسنی.، م. و زمانی، ذ. 1390. بررسی تنوع ژنتیکی برخی از پایه­های پاکوتاه کننده سیب با استفاده از نشانگر مولکولی RAPD. مجله علوم باغبانی ایران، 43(1) : 43-52.
Abdollahi Mandoulakani, B. and Bernousi, I. 2015. Genetic diversity in iranian melon populations and hybrids assessed by IRAP and REMAP markers. Journal of Agricultural Science and Technology, 17(5): 1267-1277.
Agrama, H. and Tuinstra, M. 2003. Phylogenetic diversity and relationships among sorghum accessions using SSRs and RAPDs. African journal of biotechnology, 2(10): 334-340.
Antonius-Klemola, K., Kalendar, R., Schulman, A.H. 2006. TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports. Theoretical and Applied Genetics, 112(6): 999-1008.
Botstein, D., White, R.L., Skolnick, M., Davis, R.W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American journal of human genetics, 32(3): 314-331.
Bryan, G.J., Collins, A.J., Stephenson, P., Orry, A., Smith, J.B. and Gale, M.D. 1997. Isolation and characterisation of microsatellites from hexaploid bread wheat. Theoretical and Applied Genetics, 94(5): 557-563.
D’Onofrio, C., De Lorenzis, G., Giordani, T., Natali, L., Cavallini, A. and Scalabrelli, G. 2010. Retrotransposon-based molecular markers for grapevine species and cultivars identification. Tree Genetics and Genomes, 6(3): 451-466.
Dar, J.A., Wani, A.A. and Dhar, M.K. 2019. Assessment of the genetic diversity of apple (Malus× domestica Borkh.) cultivars grown in the Kashmir Valley using microsatellite Markers. Journal of King Saud University-Science, 31(2): 194-201.
Farrokhi, J., Darvishzadeh, R., Naseri, L., Azar, M.M. and Maleki, H.H. 2011. Evaluation of Genetic Diversity Among Iranian Apple ('Malus domestica' Borkh.) Cultivars and Landraces Using Simple Sequence Repeat Markers. Australian Journal of Crop Science, 5(7): 815-821.
Gholamzadeh Khoei, B., Mandoulakani, A. and Bernousi, L. 2015. Genetic Diversity in Iranian Melon Populations and Hybrids Assessed by IRAP and REMAP Markers. Journal of Agricultural Science and Technology, 17(5): 1267-1277.
Govindaraj, M., Vetriventhan, M., Srinivasan, M. 2015. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetic Reseach International, 1-14.
Grandbastien, M.A. 1992. Retroelements in higher plants. Trends in Genetics, 8(3): 103-108.
Grandbastien, M.A. 1998. Activation of plant retrotransposons under stress conditions. Trends Plant Science, 3: 181-187.
Guimarães, J.F.R., Nietsche, S., Costa, M.R., Moreira, G.B.R., Pereira, M.C.T. and Vendrame, W., 2013. Genetic diversity in sugar apple (Annona squamosa L.) by using RAPD markers. Revista Ceres, 60: 428-431.
Harris, S.A., Robinson, J.P. and Juniper, B.E. 2002. Genetic clues to the origin of the apple. TRENDS in Genetics, 18(8): 426-430.
Jarausch, W., Saillard, C., Helliot, B., Garnier, M. and Dosba, F. 2000. Genetic variability of apple proliferation phytoplasmas as determined by PCR-RFLP and sequencing of a non-ribosomal fragment. Molecular and Cellular Probes, 14(1): 17-24.
Juniper, B.E., Watkins, R. and Harris, S.A. 1996. The origin of the apple. In Eucarpia Symposium on Fruit Breeding and Genetics, 484: 27-34.
Kaya, E. and Yilmaz-Gokdogan, E. 2016. Using Two Retrotransposon Based Marker Systems (IRAP and REMAP) for Molecular Characterization of Olive (Olea europaea L.) Cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(1) :167-174.
Kenis, K. and Keulemans, J. 2005. Genetic linkage maps of two apple cultivars (Malus× domestica Borkh.) based on AFLP and microsatellite markers. Mole Breed, 15: 205-219.
Khaled, A.G.A., Motawea, M.H. and Said, A.A., 2015. Identification of ISSR and RAPD markers linked to yield traits in bread wheat under normal and drought conditions. Journal of Genetic Engineering and Biotechnology, 13(2): 243-252.
Larsen, B., Toldam-Andersen, T.B., Pedersen, C. and Ørgaard, M. 2017. Unravelling genetic diversity and cultivar parentage in the Danish apple gene bank collection. Tree Genetics and Genomes, 13(1): 14.
Murry, M. and Thompson, W.F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8:4321-4325.
Okcu, M., Kalkışım, Ö., Okcu, Z., Karabulut, B., Yildirim, N. and Agar, G. 2015. Determination of genetic diversity among wild grown apples from eastern black sea region in Turkey using ISSR and RAPDs markers. Erwerbs-Obstbau , 57(4): 171-177.
Omasheva, M.E., Pozharsky, A.S., Smailov, B.B., Ryabushkina, N.A. and Galiakparov, N.N. 2018. Genetic diversity of apple cultivars growing in Kazakhstan. Russian journal of genetics, 54(2): 176-187.
Patzak, J., Paprštein, F., Henychová, A. and Sedlák, J. 2012. Comparison of genetic diversity structure analyses of SSR molecular marker data within apple (Malus×domestica) genetic resources. Genome, 55: 647-665.
Pereira‐Lorenzo, S., Urrestarazu, J., Ramos‐Cabrer, A.M., Miranda, C., Pina, A., Dapena, E., Moreno, M.A., Errea, P., Llamero, N., Díaz‐Hernández, M.B. and Santesteban, L.G. 2017. Analysis of the genetic diversity and structure of the Spanish apple genetic resources suggests the existence of an Iberian genepool. Annals of Applied Biology, 171(3): 424-440.
Rohlf, F. J [computer software]. 2000. NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.1. Exeter Puplishing Setauket, New York.
Savelyeva, E.N. and Kudryavtsev, A.M., 2015. AFLP analysis of genetic diversity in the genus Mallus Mill. (Apple). Russian Journal of Genetics, 51(10): 966-973.
Shapiro, J. 1999. Transposable elements as the key to a 21st century view of evolution. Genetica, 107: 171-179.
Spooner, D., Van Treuren, R., de Vicente, M.C. 2005. Molecular markers for genebank management. IPGRI Technical Bulletin No. 10. International Plant Genetic Resources Institute, Rome, Italy.
Yuying, S., Xiajun, D., Fei, W., Binhua, C., Zhihong, G. and Zhen, Z. 2011. Analysis of genetic diversity in Japanese apricot (Prunus mume Sieb. et Zucc.) based on REMAP and IRAP molecular markers. Scientia Horticulturae, 132, 50-58.