Evaluation of genetic diversity of Sistan native apple genotypes using IRAP and REMP markers

Document Type : Original Article

Authors

1 M.Sc. graduate in Medicinal Plants, Department of Horticulture and Landscape, Faculty of Agriculture, University of Zabol, Zabol, Iran.

2 Assistant Professor, Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran.

3 Professor, Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran.

4 Associate Professor, Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran.

5 Assistant Professor, Department of Horticulture and Landscape, Faculty of Agriculture, University of Zabol, Zabol, Iran.

10.30466/rip.2021.53285.1155

Abstract

In order to study the genetic diversity of 25 apple genotypes from three regions of Hamoon, Benjar and Emamiyeh of Zabol city and one region of Zahedan, 11 primers of IRAP and 3 primers of REMP were used. All 14 primers used were able to identify a total of 61 polymorphic gene loci. According to the obtained results, the average percentage of polymorphism among the studied accessions was 39.79 %, with the lowest percentage of polymorphism belonging to the primer 83003 + K001 and the highest percentage of polymorphism attributed to the primer 8565. The content of polymorphic information (PIC) and marker index (MI) varied between 0.02 to 0.28 and 0.29 to 0.54 in all studied genotypes, respectively. The highest PIC was related to K006 primer, and the lowest PIC was related to K001 + 83003 primer, and the highest and lowest MI were also related to 8565 and K001 + 83003primers, respectively. The results strengthened the possibility that the retrotransposons, which produced the most polymorphisms, were more translocated in the evolution of the plants under study and replicated more copies within the genome. The results of cluster analysis based on the UPGMA method, 25 studied genotypes were categorized into three separate groups. Genotypes with geographical origin, as well as morphological similarities and the same horticultural traits, were placed in different groups, which could be due to the different amounts of mobile elements present in these genotypes.

Keywords


خدادوست، ع .، یوسف­ زاده، ح.، امیرچخماقی، ن.، عبداللهی، ح. و حسین ­زاده، ا. 1395. تنوع ژنتیکی سیب شرقی (Malus Orientalis Uglitz.) جنگل هیرکانی ایران، با استفاده از نشانگر ISSR-PCR. مجله پژوهش­ های سلولی و مولکولی (مجله زیست ­شناسی ایران)، 29(4): 359-369.
جهانگیرزاده، ش.، نورافکن، ح. و دامیار، س. 1392. ارزیابی تنوع ژنتیکی برخی از ژنوتیپ ‎های سیب ایران با استفاده از نشانگر RAPD. بوم­شناسی گیاهان زراعی، 9(1): 21-29.
کیان­ امیری، ش.، حسنی.، م. و زمانی، ذ. 1390. بررسی تنوع ژنتیکی برخی از پایه­های پاکوتاه کننده سیب با استفاده از نشانگر مولکولی RAPD. مجله علوم باغبانی ایران، 43(1) : 43-52.
Abdollahi Mandoulakani, B. and Bernousi, I. 2015. Genetic diversity in iranian melon populations and hybrids assessed by IRAP and REMAP markers. Journal of Agricultural Science and Technology, 17(5): 1267-1277.
Agrama, H. and Tuinstra, M. 2003. Phylogenetic diversity and relationships among sorghum accessions using SSRs and RAPDs. African journal of biotechnology, 2(10): 334-340.
Antonius-Klemola, K., Kalendar, R., Schulman, A.H. 2006. TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports. Theoretical and Applied Genetics, 112(6): 999-1008.
Botstein, D., White, R.L., Skolnick, M., Davis, R.W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American journal of human genetics, 32(3): 314-331.
Bryan, G.J., Collins, A.J., Stephenson, P., Orry, A., Smith, J.B. and Gale, M.D. 1997. Isolation and characterisation of microsatellites from hexaploid bread wheat. Theoretical and Applied Genetics, 94(5): 557-563.
D’Onofrio, C., De Lorenzis, G., Giordani, T., Natali, L., Cavallini, A. and Scalabrelli, G. 2010. Retrotransposon-based molecular markers for grapevine species and cultivars identification. Tree Genetics and Genomes, 6(3): 451-466.
Dar, J.A., Wani, A.A. and Dhar, M.K. 2019. Assessment of the genetic diversity of apple (Malus× domestica Borkh.) cultivars grown in the Kashmir Valley using microsatellite Markers. Journal of King Saud University-Science, 31(2): 194-201.
Farrokhi, J., Darvishzadeh, R., Naseri, L., Azar, M.M. and Maleki, H.H. 2011. Evaluation of Genetic Diversity Among Iranian Apple ('Malus domestica' Borkh.) Cultivars and Landraces Using Simple Sequence Repeat Markers. Australian Journal of Crop Science, 5(7): 815-821.
Gholamzadeh Khoei, B., Mandoulakani, A. and Bernousi, L. 2015. Genetic Diversity in Iranian Melon Populations and Hybrids Assessed by IRAP and REMAP Markers. Journal of Agricultural Science and Technology, 17(5): 1267-1277.
Govindaraj, M., Vetriventhan, M., Srinivasan, M. 2015. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetic Reseach International, 1-14.
Grandbastien, M.A. 1992. Retroelements in higher plants. Trends in Genetics, 8(3): 103-108.
Grandbastien, M.A. 1998. Activation of plant retrotransposons under stress conditions. Trends Plant Science, 3: 181-187.
Guimarães, J.F.R., Nietsche, S., Costa, M.R., Moreira, G.B.R., Pereira, M.C.T. and Vendrame, W., 2013. Genetic diversity in sugar apple (Annona squamosa L.) by using RAPD markers. Revista Ceres, 60: 428-431.
Harris, S.A., Robinson, J.P. and Juniper, B.E. 2002. Genetic clues to the origin of the apple. TRENDS in Genetics, 18(8): 426-430.
Jarausch, W., Saillard, C., Helliot, B., Garnier, M. and Dosba, F. 2000. Genetic variability of apple proliferation phytoplasmas as determined by PCR-RFLP and sequencing of a non-ribosomal fragment. Molecular and Cellular Probes, 14(1): 17-24.
Juniper, B.E., Watkins, R. and Harris, S.A. 1996. The origin of the apple. In Eucarpia Symposium on Fruit Breeding and Genetics, 484: 27-34.
Kaya, E. and Yilmaz-Gokdogan, E. 2016. Using Two Retrotransposon Based Marker Systems (IRAP and REMAP) for Molecular Characterization of Olive (Olea europaea L.) Cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(1) :167-174.
Kenis, K. and Keulemans, J. 2005. Genetic linkage maps of two apple cultivars (Malus× domestica Borkh.) based on AFLP and microsatellite markers. Mole Breed, 15: 205-219.
Khaled, A.G.A., Motawea, M.H. and Said, A.A., 2015. Identification of ISSR and RAPD markers linked to yield traits in bread wheat under normal and drought conditions. Journal of Genetic Engineering and Biotechnology, 13(2): 243-252.
Larsen, B., Toldam-Andersen, T.B., Pedersen, C. and Ørgaard, M. 2017. Unravelling genetic diversity and cultivar parentage in the Danish apple gene bank collection. Tree Genetics and Genomes, 13(1): 14.
Murry, M. and Thompson, W.F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8:4321-4325.
Okcu, M., Kalkışım, Ö., Okcu, Z., Karabulut, B., Yildirim, N. and Agar, G. 2015. Determination of genetic diversity among wild grown apples from eastern black sea region in Turkey using ISSR and RAPDs markers. Erwerbs-Obstbau , 57(4): 171-177.
Omasheva, M.E., Pozharsky, A.S., Smailov, B.B., Ryabushkina, N.A. and Galiakparov, N.N. 2018. Genetic diversity of apple cultivars growing in Kazakhstan. Russian journal of genetics, 54(2): 176-187.
Patzak, J., Paprštein, F., Henychová, A. and Sedlák, J. 2012. Comparison of genetic diversity structure analyses of SSR molecular marker data within apple (Malus×domestica) genetic resources. Genome, 55: 647-665.
Pereira‐Lorenzo, S., Urrestarazu, J., Ramos‐Cabrer, A.M., Miranda, C., Pina, A., Dapena, E., Moreno, M.A., Errea, P., Llamero, N., Díaz‐Hernández, M.B. and Santesteban, L.G. 2017. Analysis of the genetic diversity and structure of the Spanish apple genetic resources suggests the existence of an Iberian genepool. Annals of Applied Biology, 171(3): 424-440.
Rohlf, F. J [computer software]. 2000. NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.1. Exeter Puplishing Setauket, New York.
Savelyeva, E.N. and Kudryavtsev, A.M., 2015. AFLP analysis of genetic diversity in the genus Mallus Mill. (Apple). Russian Journal of Genetics, 51(10): 966-973.
Shapiro, J. 1999. Transposable elements as the key to a 21st century view of evolution. Genetica, 107: 171-179.
Spooner, D., Van Treuren, R., de Vicente, M.C. 2005. Molecular markers for genebank management. IPGRI Technical Bulletin No. 10. International Plant Genetic Resources Institute, Rome, Italy.
Yuying, S., Xiajun, D., Fei, W., Binhua, C., Zhihong, G. and Zhen, Z. 2011. Analysis of genetic diversity in Japanese apricot (Prunus mume Sieb. et Zucc.) based on REMAP and IRAP molecular markers. Scientia Horticulturae, 132, 50-58.