اثر کاربرد خاکی زئولیت طبیعی و کود دامی بر خصوصیات بیوشیمیایی تاک انگور در شرایط تنش خشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه باغبانی و فضای سبز، دانشکده کشاورزی، دانشگاه ملایر، ملایر، ایران.

2 استاد گروه باغبانی و فضای سبز، دانشکده کشاورزی دانشگاه ملایر، ملایر، ایران.

3 استادیار گروه مهندسی آب و خاک، دانشکده کشاورزی، دانشگاه ملایر، ملایر، ایران.

10.30466/rip.2024.55006.1298

چکیده

کاربرد خاکی کود دامی و زئولیت به عنوان روشی ساده و ارزان برای حفظ رطوبت خاک در نواحی خشک و نیمه‌خشک و خاک ­های سبک مطرح است. به منظور بررسی تأثیر کود گوسفندی و زئولیت طبیعی بر ویژگی ­های بیوشیمیایی انگور بیدانه سفید در شرایط تنش خشکی، آزمایشی به صورت فاکتوریل در قالب طرح بلوک­ های کامل تصادفی در تاکستان دانشگاه ملایر، همدان طی سال­های 1401 و 1402 اجرا شد. تیمارهای آزمایش شامل دو سطح آبیاری (7 روز و 21 روز یکبار) و چهار سطح اصلاح کننده ­ها (شاهد، 12 کیلوگرم زئولیت، 15 کیلوگرم کود گوسفندی، ترکیب 12 کیلوگرم زئولیت و 15 کیلوگرم کود گوسفندی) بود. نتایج نشان داد که کاهش آبیاری به کاهش محتوای پروتئین محلول و غلظت عناصر معدنی برگ و همچنین، به افزایش محتوای پرولین، کربوهیدرات ­ها، فنل کل، مالون دی ­آلدهید و پراکسید هیدروژن برگ منجر شد. کاربرد کود حیوانی و زئولیت در هر دو شرایط آبیاری کامل و تنش خشکی، به دلیل افزایش جذب و نگهداری آب در خاک، در بهبود تمامی شاخص ­های مورد ارزیابی موثر بود. کاربرد کود حیوانی و زئولیت اثر مثبت معنی‌داری بر میزان عناصر پرمصرف (نیتروژن، فسفر و پتاسیم) برگ داشت، اما اثر این تیمارها بر میزان عناصر کم ­مصرف (آهن و روی) برگ غیرمعنی‌دار بود. نتایج این تحقیق نشان داد که با کاربرد خاکی زئولیت، به تنهایی یا در ترکیب با کود حیوانی، می ­توان با حفظ بهتر رطوبت در خاک­های سبک، اثرات منفی تنش خشکی بر تاک انگور را به حداقل رساند.

کلیدواژه‌ها


Abdel Fatah, E.M. and Khalil, S.R. 2020. Effect of zeolite, potassium fertilizer and irrigation interval on yield and quality of sugar beet in sandy soil. Journal of Plant Production, 11(12):1569-1579.
Abdi, S., Abbaspur, N., Avestan, S. and Barker, A.V. 2016. Sana physiological responses of two grapevines (Vitis vinifera L.) cultivars to Cycocel™ treatment during drought. Journal of Horticultural Science and Biotechnology, 91(3): 211-219.
Ahmed, O.H., Sumalatha, G. and Muhamad, A.N. 2010. Use of zeolite in maize (Zea mays) cultivation on nitrogen, potassium and phosphorus uptake and use efficiency. International Journal of the Physical Sciences, 5(15): 2393-2401.
Alexieva, V., Sergiev, I., Mapelli, S. and Karanov, E. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environment, 24(12), 1337-1344.
Al-Tabbal, J.A., Al-Mefleh, N.K., Al-Zboon, K.K. and Tadros, M.J. 2020. Effects of volcanic zeolite tuff on olive (Olea europaea L.) growth and soil chemistry under a constant water level: five years’ monitoring experience. Environment and Natural Resources Journal, 18(1): 44-54.
Askary, M., Parsa, S., Behdani, M.A., Jami Al-Ahmadi, M. and Mahmoodi, S. 2023. Evaluation of quantitative yield of two thyme species affected as different levels of drought stress and the manure application. Journal of Medicinal plants and By-Products, 12(1): 11-27.
Azarpour, E., Motamed, M.K., Moraditochaee, M. and Bozorgi, H.R. 2011. Effects of zeolite application and nitrogen fertilization on yield components of cowpea (Vigna unguiculata L.). World Applied Sciences Journal, 14(5): 687-692.
Bamshad, R., Kalanaki, M. and Fazilatnia, M. 2021. Effect of cow manure and deficit irrigation with saline water on some morphological and biochemical characteristics of Salicornia persica Akhani. Environmental Stresses in Crop Sciences, 14(2): 515-527.
Bari, L.R., Ghanbari, A., Darvishzadeh, R., Giglou, M.T. and Baneh, H.D. 2021. Discernment of grape rootstocks base on their response to salt stress using selected characteristics in combination with chemometric tools. Food Chemistry, 365: 130408.
Bates, L.S., Waldren, R.P.A. and Teare, I.D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207.
Bchir, A., Steppe, K., Van Labeke, M.C., Lemeur, R. and Braham, M. 2013. Active and passive osmotic adjustment in olive tree leaves during drought stress. European Scientific Journal, 9(24): 423-439.
Bettaieb, I., Hamrouni-Sellami, I., Bourgou, S., Limam, F. and Marzouk, B. 2011. Drought effects on polyphenol composition and antioxidant activities in aerial parts of Salvia officinalis L. Acta Physiologiae Plantarum, 33: 1103-1111.
Bhardwaj, J. and Yadav, S.K. 2012. Comparative study on biochemical parameters and antioxidant enzymes in a drought tolerant and a sensitive variety of horsegram (Macrotyloma uniflorum) under drought stress. American Journal of Plant Physiology, 7(1): 17-29.
Bidabadi, S.S., Sabbatini, P. and VanderWeide, J. 2023. Iron oxide (Fe2O3) nanoparticles alleviate PEG-simulated drought stress in grape (Vitis vinifera L.) plants by regulating leaf antioxidants. Scientia Horticulturae, 312: 111847.
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2): 248-254.
Castronuovo, D., Comegna, A., Belviso, C., Satriani, A. and Lovelli, S. 2023. Zeolite and Ascophyllum nodosum-based biostimulant effects on spinach gas exchange and growth. Agriculture, 13(4): 754.
Cataldo, E., Salvi, L., Paoli, F., Fucile, M., Masciandaro, G., Manzi, D., Masini, C.M. and Mattii, G.B. 2021b. Application of zeolites in agriculture and other potential uses: A review. Agronomy, 11(8): 1547.
Cataldo, E., Fucile, M., Manzi, D., Masini, C.M., Doni, S. and Mattii, G.B. 2023. Sustainable soil management: effects of clinoptilolite and organic compost soil application on eco-physiology, quercitin, and hydroxylated, methoxylated anthocyanins on Vitis vinifera. Plants, 12(4): 708.
Cataldo, E.C., Salvi, L.S., Paoli, F.P., Fucile, M.F., Masciandaro, G.M., Manzi, D.M., Masini, C.M.M. and Mattii, G.B.M. 2021a. Effects of natural clinoptilolite on physiology, water stress, sugar, and anthocyanin content in Sanforte (Vitis vinifera L.) young vineyard. The Journal of Agricultural Science, 159(7-8): 488-499.
Chatzistathis, T., Papadakis, I.E., Papaioannou, A., Chatzissavvidis, C. and Giannakoula, A. 2020. Comparative study effects between manure application and a controlled-release fertilizer on the growth, nutrient uptake, photosystem II activity and photosynthetic rate of Olea europaea L. (cv. Koroneiki). Scientia Horticulturae, 264: 109176.
Choo, L.N.L.K., Ahmed, O.H., Talib, S.A.A., Ghani, M.Z.A. and Sekot, S. 2020. Clinoptilolite zeolite on tropical peat soils nutrient, growth, fruit quality, and yield of Carica papaya L. cv. Sekaki. Agronomy, 10(9): 1320.
Conesa, M.R., De La Rosa, J.M., Domingo, R., Banon, S. and Pérez-Pastor, A. 2016. Changes induced by water stress on water relations, stomatal behaviour and morphology of table grapes (cv. Crimson Seedless) grown in pots. Scientia Horticulturae, 202: 9-16.
Cramer, G.R., Van Sluyter, S.C., Hopper, D.W., Pascovici, D., Keighley, T. and Haynes, P.A. 2013. Proteomic analysis indicates massive changes in metabolism prior to the inhibition of growth and photosynthesis of grapevine (Vitis vinifera L.) in response to water deficit. BMC Plant Biology, 13(49): 1-22.
Doni, S., Gispert, M., Peruzzi, E., Macci, C., Mattii, G.B., Manzi, D., Masini, C.M. and Grazia, M. 2021. Impact of natural zeolite on chemical and biochemical properties of vineyard soils. Soil Use and Management, 37(4): 832-842.
Fahim, S., Ghanbari, A., Naji, A.M., Shokohian, A.A., Lajayer, H.M., Gohari, G. and Hano, C. 2022. Multivariate discrimination of some grapevine cultivars under drought stress in Iran. Horticulturae, 8(10): 871.
Farajzadeh-Memari-Tabrizi, E. and Babashpour-Asl, M. 2022. Effects of zeolite, vermiculite, and superabsorbent application on agronomic and physiological traits of safflower in response to water-deficit stress. Journal of Plant Physiology and Breeding, 12(1): 1-13.
Filcheva, E.G. and Tsadilas, C.D. 2002. Influence of clinoptilolite and compost on soil properties. Communications in Soil Science andPlant Analysis, 33(3-4): 595-607.
Guaya, D., Mendoza, A., Valderrama, C., Farran, A., Sauras-Yera, T. and Cortina, J.L. 2020. Use of nutrient-enriched zeolite (NEZ) from urban wastewaters in amended soils: Evaluation of plant availability of mineral elements. Science of the Total Environment, 727: 138646.
Gurrieri, L., Merico, M., Trost, P., Forlani, G. and Sparla, F. 2020. Impact of drought on soluble sugars and free proline content in selected Arabidopsis mutants. Biology, 9(11): 367.
Harhash, M.M., Ahamed, M.M. and Mosa, W.F. 2022. Mango performance as affected by the soil application of zeolite and biochar under water salinity stresses. Environmental Science and Pollution Research, 29(58): 87144-87156.
Hasanuzzaman, M., Bhuyan, M.B., Zulfiqar, F., Raza, A., Mohsin, S.M., Mahmud, J.A., Fujita, M. and Fotopoulos, V. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8): 681.
Hazrati, S., Tahmasebi-Sarvestani, Z., Mokhtassi-Bidgoli, A., Modarres-Sanavy, S.A.M., Mohammadi, H. and Nicola, S. 2017. Effects of zeolite and water stress on growth, yield and chemical compositions of Aloe vera L. Agricultural Water Management, 181: 66-72.
Hodges, D.M., DeLong, J.M., Forney, C.F. and Prange, R.K. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207: 604-611.
Jakab, S. and Jakab, A. 2010. Effects of the Zeolitic Tuff on the physical characteristics of Haplic Luvisol and the quality of fruits on apple orchards. Acta Universitatis Sapientiae Agriculture and Environment, 2: 31-37.
Jha, B. and Singh, D.N. 2016. Fly ash zeolites: innovations, applications, and directions (Vol. 78). Singapore: Springer.
Joseph, S., Graber, E.R., Chia, C., Munroe, P., Donne, S., Thomas, T., Nielsen, S., Marjo, C., Rutlidge, H., Pan, G.X. and Li, L. 2013. Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Management, 4(3): 323-343.
Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M. and Sharma, A. 2020. The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Applied Sciences, 10(16): 5692.
Karami, L., Ghaderi, N. and Javadi, T. 2017. Morphological and physiological responses of grapevine (Vitis vinifera L.) to drought stress and dust pollution. Folia Horticulturae, 29(2): 231-240.
Karami, S., Hadi, H., Tajbaksh, M. and Modarres-Sanavy, S.A.M. 2020. Effect of zeolite on nitrogen use efficiency and physiological and biomass traits of amaranth (Amaranthus hypochondriacus) under water-deficit stress conditions. Journal of Soil Science and Plant Nutrition, 20(3): 1427-1441.
Karimi, S., Rahemi, M., Rostami, A.A. and Sedaghat, S. 2018. Drought effects on growth, water content and osmoprotectants in four olive cultivars with different drought tolerance. International Journal of Fruit Science, 18(3): 254-267.
Kavvadias, V., Ioannou, Z., Vavoulidou, E. and Paschalidis, C. 2023. Short term effects of chemical fertilizer, compost and zeolite on yield of lettuce, nutrient composition and soil properties. Agriculture, 13(5):1022.
Keivanfar, S., Fotouhi Ghazvini, R., Ghasemnezhad, M., Mousavi, A. and Khaledian, M.R. 2019. Effects of regulated deficit irrigation and superabsorbent polymer on fruit yield and quality of'Granny Smith'apple. Agriculturae Conspectus Scientificus, 84(4): 383-389.
Khalil, H.A. and Eldin, R.M.B. 2021. Chitosan improves morphological and physiological attributes of grapevines under deficit irrigation conditions. Journal of Horticultural Research, 29(1): 9-22.
Król, A., Amarowicz, R. and Weidner, S. 2014. Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress. Acta Physiologiae Plantarum, 36: 1491-1499.
Leogrande, R. and Vitti, C. 2019. Use of organic amendments to reclaim saline and sodic soils: a review. Arid Land Research and Management, 33(1): 1-21.
Lopes, J.I., Arrobas, M., Brito, C., Gonçalves, A., Silva, E., Martins, S., Raimundo, S., Rodrigues, M.Â. and Correia, C.M. 2020. Mycorrhizal fungi were more effective than zeolites in increasing the growth of non-irrigated young olive trees. Sustainability, 12(24): 10630.
Mansoor, S., Khan, T., Farooq, I., Shah, L.R., Sharma, V., Sonne, C., Rinklebe, J. and Ahmad, P. 2022. Drought and global hunger: biotechnological interventions in sustainability and management. Planta, 256(5): 97.
Marín-Martínez, A., Sanz-Cobeña, A., Bustamante, M.A., Agulló, E. and Paredes, C. 2021. Effect of organic amendment addition on soil properties, greenhouse gas emissions and grape yield in semi-arid vineyard agroecosystems. Agronomy, 11(8): 1477.
Mechri, B., Tekaya, M., Hammami, M. and Chehab, H. 2020. Effects of drought stress on phenolic accumulation in greenhouse-grown olive trees (Olea europaea). Biochemical Systematics and Ecology, 92: 104112.
Medoro, V., Ferretti, G., Galamini, G., Rotondi, A., Morrone, L., Faccini, B. and Coltorti, M. 2022. Reducing nitrogen fertilization in olive growing by the use of natural chabazite-zeolitite as soil improver. Land, 11(9):1471.
Milošević, T. and Milošević, N. 2015. Apple fruit quality, yield and leaf macronutrients content as affected by fertilizer treatment. Journal of Soil Science and Plant Nutrition, 15(1): 76-83.
Milošević, T. and Milošević, N. 2017. Influence of mineral fertilizer, farmyard manure, natural zeolite, and their mixture on fruit quality and leaf micronutrient levels of apple trees. Communications in Soil Science and Plant Analysis, 48(5): 539-548.
Milosevic, T. and Milosevic, N. 2009. The effect of zeolite, organic and inorganic fertilizers on soil chemical properties, growth and biomass yield of apple trees. Plant, Soil and Environment, 55(12): 528-535.
Milošević, T., Milošević, N. and Glišić, I. 2013. Tree growth, yield, fruit quality attributes and leaf nutrient content of ‘Roxana’apricot as influenced by natural zeolite, organic and inorganic fertilisers. Scientia Horticulturae, 156: 131-139.
Mondal, M., Biswas, B., Garai, S., Sarkar, S., Banerjee, H., Brahmachari, K., Bandyopadhyay, P.K., Maitra, S., Brestic, M., Skalicky, M. and Ondrisik, P. 2021. Zeolites enhance soil health, crop productivity and environmental safety. Agronomy, 11(3): 448.
Nemeskeri, E., Kovacs-Nagy, E., Nyeki, J. and Sardi, E. 2015. Responses of apple tree cultivars to drought: carbohydrate composition in the leaves. Turkish Journal of Agriculture and Forestry, 39(6): 949-957.
Nozari, R., Moghadam, H.R.T. and Zahedi, H. 2013. Effect of cattle manure and zeolite applications on physiological and biochemical changes in soybean [Glycine max check for this species in other resources (L.) Merr.] grown under water deficit stress. Revista Cientifica UDO Agrícola, 13(1): 76-84.
Perez-Caballero, R., Gil, J., Benitez, C. and Gonzalez, J.L. 2008. The effect of adding zeolite to soils in order to improve the NK nutrition of olive trees, preliminary results. American Journal of Agricultural and Biological Sciences, 2(1): 321-324.
Pirzad, A. and Mohammadzade, S. 2014. The effects of drought stress and zeolites on the protein and mineral nutrients of Lathyrus sativus. International Journal of Biosciences, 4(7): 241-248.
Polat, E., Karaca, M., Demir, H. and Onus, A.N. 2004. Use of natural zeolite (clinoptilolite) in agriculture. Journal of Fruit and Ornamental Plant Research, 12(1): 183-189.
Pontin, M., Murcia, G., Bottini, R., Fontana, A., Bolcato, L. and Piccoli, P., 2021. Nitric oxide and abscisic acid regulate osmoprotective and antioxidative mechanisms related to water stress tolerance of grapevines. Australian Journal of Grape and Wine Research, 27(3): 392-405.
Rabai, K.A., Ahmed, O.H. and Kasim, S., 2013. Use of formulated nitrogen, phosphorus, and potassium compound fertilizer using clinoptilolite zeolite in maize (Zea mays L.) cultivation. Emirates Journal of Food and Agriculture (EJFA), 25(9).
Rahimi, E., Nazari, F., Javadi, T., Samadi, S. and da Silva, J.A.T. 2021. Potassium-enriched clinoptilolite zeolite mitigates the adverse impacts of salinity stress in perennial ryegrass (Lolium perenne L.) by increasing silicon absorption and improving the K/Na ratio. Journal of Environmental Management, 285: 112142.
Rashid, Z.S., Homed, A.T. and Essa, B.A. 2020. Effect of biofertilizers and animal manure on some chemical and botanical properties of date palm (Phoenix dactylifera L.). International Journal of Agricultural and Statistical Sciences, 16(1): 2020.
Sami, F., Yusuf, M., Faizan, M., Faraz, A. and Hayat, S. 2016. Role of sugars under abiotic stress. Plant Physiology and Biochemistry, 109: 54-61.
Sedaghat, M., Hazrati, S. and Omrani, M. 2022. Use of zeolite and salicylic acid as an adaptation strategy against drought in wheat plants. South African Journal of Botany, 146: 111-117.
Shamili, M., Dehghanpour, S. and Atrash, S. 2020. Zeolite alleviates defense responses in drought stressed carrot (Daucus carota L.). Journal of Plant Process and Function, 9(37): 27-36.
Spanos, G.A. and Wrolstad, R.E. 1990. Influence of processing and storage on the phenolic composition of Thompson seedless grape juice. Journal of Agricultural and Food Chemistry, 38(7): 1565-1571.
Suseela, V., Tharayil, N., Xing, B. and Dukes, J.S. 2015. Warming and drought differentially influence the production and resorption of elemental and metabolic nitrogen pools in Q uercus rubra. Global Change Biology, 21(11): 4177-4195.
Tadayyon, A., Nikneshan, P. and Pessarakli, M. 2018. Effects of drought stress on concentration of macro-and micro-nutrients in Castor (Ricinus communis L.) plant. Journal of Plant Nutrition, 41(3): 304-310.
Tangolar, S., Tangolar, S., Kelebek, S.E.R.P.İ.L. and Topcu, S. 2016. Determination of phenolics, sugars, organic acids and antioxidants in the grape variety kalecik karasi under different bud loads and irrigation amounts. Korean Journal of Horticultural Science and Technology, 34(3): 495-509.
Treacy, M.J. and Higgins, J.B. 2001. Collection of simulated XRD powder patterns for zeolites, 4th edition. Elsevier, Amsterdam, Netherlands, p. 586
Tzortzakis, N., Chrysargyris, A. and Aziz, A. 2020. Adaptive response of a native mediterranean grapevine cultivar upon short-term exposure to drought and heat stress in the context of climate change. Agronomy, 10(2): 249.
Wang, Y., Chen, J., Sun, Y., Jiao, Y., Yang, Y., Yuan, X., Lærke, P.E., Wu, Q. and Chi, D. 2023. Zeolite reduces N leaching and runoff loss while increasing rice yields under alternate wetting and drying irrigation regime. Agricultural Water Management, 277: 108130.
Yamika, W.S.D., Aini, N., Setiawan, A. and Runik, D.P. 2018. Effect of gypsum and cow manure on yield, proline content, and K/Na ratio of soybean genotypes under saline conditions. Journal of Degraded and Mining Lands Management, 5(2): 1047.
Zeng, G., Gao, F., Li, C., Li, D. and Xi, Z. 2022. Characterization of 24-epibrassinolide-mediated modulation of the drought stress responses: Morphophysiology, antioxidant metabolism and hormones in grapevine (Vitis vinifera L.). Plant Physiology and Biochemistry, 184: 98-111.