Effects of drought stress on growth and physiological characteristics of Sour Cherry cv. "Mykrez" saplings

Document Type : Original Article

Authors

1 Assistant Professors of Pomology, Faculty of Agriculture, University of Kurdistan, Iran

2 Former M.Sc. Student, Faculty of Agriculture, Urmia University, Iran

Abstract

Drought is one of the most important factors limiting plant growth. Due to climate changes, the orchards are at risk of drought stress in our country. In this study, we investigated the response of Sour cherry cv. "Mykrez" to different levels of water stress. A randomized complete block design experiment with three water stress treatments (control, -5 and -10 bar based on soil water tension) was performed. Growth traits, including growth rate of branches, number of leaves and leaf area and physiological parameters including leaf relative water content, proline and total carbohydrates, total soluble carbohydrates, membrane stability index and leaf chlorophyll content (a, b and total) were measured. The results showed that the growth of branches, number of leaves and leaf area were significantly decreased with increase in water stress level and there was a significant difference between the three treatments. Proline and total soluble carbohydrates were increased in – 5 bar and -10 bar drought stresses compared with the control. Total carbohydrates were significantly reduced in – 5 bar and -10 bar compared to control. RWC and chlorophyll (a, b and total) were decreased in water stress treatments. Based on the findings of this study, it seems that "Mykrez" Sour cherry cultivar increases leaf proline and total soluble carbohydrates content in order to overcome the adverse effects of water stress.

Keywords


اخوندی، م.، صفرنژاد، ع، و لاهوتی، م. 1385. اثرتنش خشکی برتجمع پرولین وتغییرات عناصر در یونجه یزدی، نیکشهری و رنجر(Medicago sativa L.). علوم و فنون کشاورزی و منابع طبیعی،10(1): 156-174.
ارجی، ع.، ارزانی، ک، و ابراهیم زاده، ح. 1382. مطالعه کمی پرولین و کربوهیدرات‌های محلول در پنج رقم زیتون تحت تنش خشکی. زیست شناسی ایران، 16 (4): 47-59.
دلیل، ب، و قاسمی گلعذانی، ک. 1390. اثر محدودیت آب  بر محتوای نسبی آب و غشای سلولی در برگ های ذرت. دومین کنفرانس ملی فیزیولوژی گیاهی ایران. 9-8 اردیبهشت. یزد. ص 205.
جلیلی­مرندی، ر. (1386) میوه کاری. انتشارات جهاد دانشگاهی دانشگاه ارومیه. 251 صفحه.
جوادی، ت.، ارزانی، ک، و ابراهیم­زاده ح. 1383. بررسی میزان کربوهیدرات‌های محلول و پرولین در نه ژنوتیپ گلابی آسیایی. زیست شناسی ایران، 17 (4): 369-387.
جوادی، ت، و بهرام­نژاد، ب. 1389. محتوای نسبی آب و تبادلات گازی سه ژنوتیپ وحشی گلابی در شرایط تنش آبی. علوم باغبانی(علوم و صنایع کشاورزی)، 24 (2): 223-233.
خاکشور مقدم، ز.، لاهوتی، م، و گنجعلی، ع. 1390.  بررسی اثرات تنش خشکی ناشی از پلی اتیلن گلایکول بر جوانه­زنی و خصوصیات مورفوفیزیولوژیک گیاه شوید. نشریه علوم باغبانی.25: 185-193.
ذوالفقاری، ر.، نظری، م، و فیاض، پ. 1390. بررسی عملکرد راندمان کوانتومی فتوسیستم II (Fv/Fm) و میزان کلروفیل نهال‌های گونه بلوط ایرانی تحت تنش کمبود آب. دومین کنفرانس ملی (انجمن) فیزیولوژی گیاهی ایران. 9-8 اردیبهشت. یزد. ص 207.
رضایی، ط. 1386. بررسی برخی مشخصه‌های فیزیولوژیکی پنج رقم انگور جهت انتخاب رقم متحمل به خشکی. پایان­نامه کارشناسی ارشد. دانشگاه همدان. 61 صفحه.
عزیزی، ح. 1387. تأثیر تنش خشکی بر خصوصیات مورفولوژیکی و فیزیولوژیکی سه رقم انگور. پایان نامه کارشناسی­ارشد. دانشگاه ارومیه. 65 صفحه.
مجیدی هروان، ا. 1372. مکانیزم فیزیولوژیکی مقاومت به تنگناهای محیطی. چکیده مقالات اولین کنگره زراعت و اصلاح نباتات ایران، دانشگاه تهران.134-133.
موسوی، س ا.، تاتاری، م.، محنت­کش، ع م. و حقیقی، ب. 1388. پاسخ رشد رویشی دانهال‌های جوان پنج رقم بادام به تنش کم آبی. مجله به نژادی نهال و بذر.25 (4): 551-567.
مهرابیان‌مقدم، ن.، آروین، م.، خواجویی نژاد، ج غ. و مقصودی، ک. 1390. اثر اسید سالیسیلیک بر رشد و عملکرد علوفه و دانه ذرت در شرایط تنش خشکی در مزرعه.  مجله به زراعی نهال و بذر.27 (1): 41-55.
هاشمی دزفولی، ا.، کوچکی، ع، و بنایان اول، م. 1374. افزایش عملکرد گیاهان زراعی. انتشارات جهاد دانشگاهی دانشگاه مشهد. 287 صفحه.
Alian, A., Altan, A. and Heuer, B. 2000. Genotypic difference in salinity and water stress tolerance of fresh market tomato cultivar. Plant Science, 152: 59- 65.
Al-Karaki, R.N., Clark, R.B., and Sullivan, C.Y. 1996. Phosphorus nutrition and water stress effects on proline accumulation in sorghum and bean. Journal of Plant Physiology, 148: 745-7551.
Bates, L.S., Waldren, P.R, and Teare, I.D. 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 39:205-207.
Blowers, M.H. 1989. Applications of chlorophyll fluorescence to study the penetration of herbicides into leaves. PhD thesis. University of Essex. Colchester. UK.
 
Castrillo, M. and Turujillo, I. 1994. Ribulose- 1,5-bisphosphate carboxylase activity and chlorophyll and protein content in two cultivares of French bean plants under water stress and rewatering. Photosythtica, 30: 175-181.
Chartzoulakis, K. Patakas, A. and Bosabalidis, A.M .1999. Changes in water relations, Photosynthesis and leaf anatomy induced by intermittent drought in two olive cultivars. Enviromental and Experimental Botany, 42: 113-120.
Flore, J.A and Desmond, R.L. 1999. Photoassemilate production and Distribution in cherry. HortScience, 34(6): 1015-1019.
Fokar, M. Blum, A. and Nguyen, H.T. 1998. Heat tolerance in spring wheat. II grain filling. Euphytica, 104: 9-15.
Galmes, J., Flexas, J., Save, R. and Medrano, H. 2007. Water relation and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery.Plant and Soil, 290:139-155.
Germana, C. 1997. Experiences on the response of almond plants (Amygdalus communis L.) to water stress. Acta Horticulturae, 449: 497-503.
Gomes, L.J., Coutinho, J.P., Galhano, V. and Cordeiro, V. 2006. Responses of five almond cultivars to irrigation: Photosynthesis and leaf water potential. Agricultural water Management, 83: 261-265.
Granier, C. and Tardieu, F. 1999. Water Deficit and spatial pattern of leaf development. Plant Physiology, 119: 609-620.
Grant, O.M., Johnson, A.W., Davies, M.J., James, C.M, and Simpson, D.W. 2010. Physiological and morphological diversity of cultivated strawberry (Fragaria × ananassa) in response to water deficit. Environmental and Experimental Botany, 68: 264-272.
Gross, J. 1991. Pigment in vegetables. Von Nostrand Reinhold. New York, 351p.
Hedge, J.E. and Hofreiter, B.T. (1962). In: R.L. Whistler and J.N. Be Miller, Carbohydrate Chemistry17, Academic Press, New York.
Hsiao, T.C. 1973. Plant responses to water stress. Annual review of plant physiology, 24:519-570.
Irigoyen, J.J., Emerich, D.W, and Sanchez-Diaz, M. 1992. Water stress induce changes in concentration of proline and total soluble sugar in nodulated alfalfa (Medicgo sativa) plants. Physiologia Plantarum, 84:55-60.
Jiang, Y. and Huang, B. 2001.Osmotic adjustment and root growth associated with drought pre-conditioning enhanced heat tolerance in Kentucky bluegrass. Crop Science, 41: 1168-1173.
Kuznetso, V.I, and Shevyakova, N.I. 1999. Proline under stress: Biologicalrole, metabolism, and regulation. Russian Journal of Plant Physiology, 46: 274-287.
Lawlor, D.W, and Cornic, G. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plant. Plant, Cell and Environment, 25: 275-294.
Levitt, J. 1980. Responses of Plants to Environmental Stresses.2nd. ed. Vol-I and II. Academic Press, London.
Mafakheri, A., Siosemardeh, A., Bahramnejad, B. and Sohrabi, H. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Austuralian Journal: crop science, 4:580-585.
Palled, Y.B., Chandrashekharaiah, A.M. and Radder, G.D. 1985. Response of Bengal gram to misture stress.  Indian journal of agronomy, 30: 104-106.
Patakas, A. Nikolaou, N. Zioziou, E. Radoglou, K. and Noitsakis, B. 2002. The role of organic solute and ion accumulation in osmotic adjustment in drought- stressed grapevines. Plant Science, 163: 361-367.
Paquin, R. and Lechasseur, P. 1979. Observations surunemethode dosage de la proline libredans les extraits de plantes. Canadian Journal of Botany, 57: 1851-1854.
 
Pereira, J.S. and Chaves, M.M. 1993. Plant water deficits in mediteranian ecosystems. In: Water Deficits and Plant Growth. Eds. By Kozlowski, T. T. vol.IV. 237-251. Academic Press, New York.
Ranney, T.G., Bassuk, N.L. and Whitlow, T.H. 1991. Osmotic adjustment and solute contributes in leaves and roots of water-stressed cherry (Prunus) trees. Journal of the American Society for Horticultural Science, 116: 684-688.
Sairam, R.K., Veerabhadra, R.K. and Srivastava, G.C. 2002. Differential response of wheat genotype to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163: 1037-1046.
Sivritepe, N. Erturk, U. Yerlikaya, C. Turkan, I. Bor, M. and Ozdemir, F. 2008. Response of the cherry rootstock to water stress induced in vitro. BiologiaPlantarum, 52: 573-576.
Stewart, C.R. 1980. The mechanism of abscisic acid–induced proline accumulation in barley leaves. Plant Physiology, 66: 230-233.
Treder, W. Konopacki, P. and Mika, A. 1997. Duration of water stress and its influence on the growth of nursery apple trees planted in containers under plastic tunnel conditions. Acta Horticultiral, 449: 541-544.
Valliyodan, B. and Nguyen, H.T. 2006. Understanding  regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology, 9: 1-7.
Wang, Z. and Stutte, G.W. 1992. The role of carbohydrates in active osmotic adjustment in apple under water stress. Journal of the American Society for Horticultural Science, 117: 819-823.
Zhang, J. Yao, Y. John, G.S., and David, C.F .2010. Influence of soil drought stress on photosynthesis, carbohydrates and the nitrogen and phosphorus absorb in different section of leaves and stem of Fuji/M.9 EML, a young apple seedling. African Journal of Biotechnology, 9: 5320-532.